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Self-organization in a simple model of adaptive agents playing 22 games
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We analyze, both analytically and numerically, the self-organization of a system of “selfish” adaptive agents
playing an arbitrary iterated pairwise garuefined by a X 2 payoff matriy. Examples of possible games to
play are theprisoner’s dilemmaPD) game, thechickengame, théherogame, etc. The agents have no memory,
use strategies not based on direct reciprocity nor “tags” and are chosen at random, i.e., geographical vicinity
is neglected. They can play two possible strategies: coopétater defect(D). The players measure their
success by comparing their utilities with an estimate for the expected benefits and update their strategy
following a simple rule. Two versions of the model are studigd:the deterministic versiofthe agents are
either in definite states C or)land (2) the stochastic versiofthe agents have a probabilityof playing O.
Using a general master equation we compute the equilibrium states into which the system self-organizes,
characterized by their average probability of cooperatign Depending on the payoff matrix, we show that
Ceq Can take five different values. We also consider the mixing of agents using two different payoff matrices
and show that any value af,, can be reached by tuning the proportions of agents using each payoff matrix.
In particular, this can be used as a way to simulate the effect of a fradtmh“antisocial” individuals—
incapable of realizing any value to cooperation—on the cooperative regime hold by a population of neutral or
“normal” agents.
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[. INTRODUCTION interesting works Szabet al. [9,10] applied the sophisti-
cated techniques developed in nonequilibrium statistical
Complex systems pervade our daily life. They are difficultphysics to spatial evolutionary games.
to study because they do not exhibit simple cause-and-effect The most popular exponent of game theory is phigon-
relationships and their interconnections are not easy to digr's dilemma(PD) game introduced in the early 1950s by
entangle. Flood and Dreshef1l] to model the social behavior of
Game theory has been demonstrated to be a very ﬂexibf‘@e_lfish” individuals.—individuals who pursue exclusively
tool to study complex systems. It coalesced inritzmal  their own self-benefit. _
form [1] during the second World War with the work of von . 1he PD game is an example of &2 game in normal

Neumann and Morgenstefi2] who first applied it in eco- [°rm: (i) there are two players, each confronting two
noMicS. choices—to cooperatéC) or to defect(D) (i) with a 2X 2

Later, in the 1970s, it was the turn of biology mainly with matrix specifying the payoffs of each player for the four

e Work of eyrard- Stk who showed hat the game PSSEe SUcemedC SICOID.CL A D) ol
theory can be applied to various problems of evolution, an piay g

. ther will do. A player who plays C gets the “reward or
proposgd the concept of evolutionary stqble s.trat(@s, the “sucker’s payoff”S depending if the other player plays
as an important concept for understanding biological phe

X X F=C or D respectively, while if he plays D he gets the “temp-
nomena. Following rules dictated by game theory to attain aRytinn to defect’T or the “punishment’P depending if the

ESS requires neither consciousness nor a brain. Moreover, Aner player plays C or D, respectively. These four payoffs
recent experiment found that two variants of a RNA virusgpey the relations

seem to engage in two-player ganid$

This opens a new perspective, perhaps the dynamic of T>R>P>S 1)
very simple agents, of the kind we know in physics which
can be modeled by game theory providing an alternative ap"Emd
proach to physical problems. For instance, energies could be 2R>S+T. )
represented as payoffs and phenomena such as phase transi-
tions understood as many-agent games. As a particular appli-hus independently of what the other player does, by(Ex.
cation of this line of thought we have seen recently a prolif-defection D yields a higher payoff than cooperation(T
eration of papers addressing the issueqaBntum games >R andP>S) and is thedominant strategyThe outcome
[5—8] which might shed light on the hot issue of quantum
computing. Conversely, physics can be useful to understand——
the behavior of adaptive agents playing games used to model[X,Y] means that the first player plays X and the second player
several complex systems in nature. For instance, in somglays Y (X and Y=C or D).
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[D,D] is thus called a Nash equilibriupi2]. The dilemmais egies will be chosen. The situation becomes more interesting
that if both defect, then both do worse than if both had cowhen the games are played repeatedly. In thiéseted
operated P<R). Condition(2) is required in order that the gamesplayers can modify their behavior with time in order
average utilities for each agent of a cooperative fRirare  to maximize their utilities as they play, i.e., they can adopt
greater than the average utilities for a pair exploitative exdifferent strategies. In order to escape from the noncoopera-
ploiter [(T+S)/2]. tive Nash equilibrium state of social dilemmas it is generally
Changing the rank order of the payoffs—the inequalitiesassumed either memory of previous interactifi§ or fea-
(1)—gives rise to different games. A general taxonomy oftures(“tags”) permitting cooperators and defectors to distin-
2x 2 gamegone-shot games involving two players with two guish one anothdrl5]; or spatial structure is requirdd6].
actions eachwas constructed by Rapoport and Guy#s]. Recently, a simple modé¢lL7] of selfish agents was pro-
A general 22 game is defined by a payoff matrMRSTP  posed without memory of past encounters, without tags and
with payoffs not necessarily obeying the conditibii) or ~ with no spatial structure playing an arbitrary<2 game,
(2 defined by a general payoff matrix such as Bj. At a given
timet, each of theN,4 agents, numbered by an indexhas a
(RR) (ST) probability ¢;(t) of playing C[1—c;(t) of playing D]. Then
(T,S) (P,P))" @ 3 pair of agents are selected at random to play. All the play-
ers use the same measure of success to evaluate if they did
The payoff matrix gives the payoffs faow actions when well or badly in the game which is based on a comparison of
confronting withcolumnactions. their utilities U with an estimate of the expected incorae
Apart from the PD game there are other some well studieénd the arithmetic mean of payoffg=(R+ S+ T+ P)/4.
games. For instance, when the damage from mutual defe®Next, they update theic;(t) in consonance, i.e., a player
tion in the PD is increased so that it finally exceeds thekeeps hisci(t) if he did well or modifies it if he did badly.

RSTP_

damage suffered by being exploited, Our long term goal is to study the quantum and statistical
versions of this model, that is, on one hand to compare the
T>R>5>P, (4)  efficiency and properties of quantum strategies vs the classi-

cal ones for this model in a spirit similar to that of RE5).

On the other hand, we are also interested in the effect of
Hloise, for instance by introducing a Metropolis Monte Carlo
tfbmperature, and the existence of power laws in the space of
payoffs that parametrize the game, of the type found in Refs.
'%3,10], for a spatial structured version of this model. Before
embarking on the quantum or statistical mechanics of this
model, the objective in this paper is to complete the study of
She simplest nonspatial mean field version. In particular, to
present an analytic derivation of the equilibrium states for
T>S>R>P, (5) any payoff matrix, i.e., for an arbitrary >22_ game using _
elemental calculus, both for the deterministic and stochastic

it transforms into thdeader game. The name of the game Versions. In the first case the calculation is elementary and
stems from the following every day life situation: Two car S€rves as a guide to the more subtle computation of the sto-
drivers want to enter a crowded one-way road from oppositéhastic model. These equilibrium states into which the sys-
sides, if a small gap occurs in the line of the passing cars, €M self-organizes, which depend on the payoff matrix, are
is preferable that one of them takes the lead and enters in@f three types: “universal cooperation” or “all C,” of inter-
the gap instead of that both wait until a large gap occurs anfnediate level of cooperation and “universal defection” or
allows both to enter Simu|taneous|y_ “all D" with, respectively, Ceq=1.0, 0<Ceq< 1.0 and 0.0.

In fact, every payoff matrix, which at a first glance could We also consider the effect of mixing players using two dif-
seem unreasonable from the point of view of selfish indi-ferent payoff matrices. Specifically, a payoff matrix produc-
viduals, can be applicable to describe real life situations ifNg Ceq=0.0 and the canonical payoff matrix are used to
different realms or contexts. Furthermore, “unreasonable’simulate, respectively, absolutely D or “antisocial” agents
payoff matrices can be used by minorities of individualsand “normal” agents.
which depart from the normal onéassumed to be neutjal

the new game is called thehickengame. Chicken is named
after the car racing game. Two cars drive towards each oth
for an apparent head-on collision. Each player can swerve
avoid the crash(cooperatg or keep going(defec). This
game applies thus to situations such that mutual defection
the worst possible outcom@ence an unstable equilibrigm

When the reward of mutual cooperation in the chicken
game is decreased so that it finally drops below the loss
from being exploited,

for instance, absolutely D individuals incapable of realizing Il. THE MODEL
any value to cooperation or absolutely C “altruistic” indi-
viduals (more on this later We consider two versions of the model introduced in Ref.

In one-shot or nonrepeated games, where each player hfk7]. First, a deterministic version, in which the agents are
a dominant strategy, as in the PD, then generally these stragdways in definite states either C or D, i.e., “black and
white” agents without “gray tones.” Nevertheless, it is often
remarked that this is clearly an oversimplification of the be-
2We will maintain the letter®R, S, T, or P to denote the payoffs in havior of individualg18]. Indeed, their levels of cooperation
order to keep the PD standard notation. exhibit a continuous gamma of values. Furthermore, com-
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pletely deterministic algorithms fail to incorporate the Illl. COMPUTATION OF THE EQUILIBRIUM STATES
stochastic component of human behavior. Thus, we consider
also a stochastic version, in which the agents only have prob-
abilities for playing C. In other words, the variabte, de- For the deterministic case the valuesagf, are obtained
noting the state or “behavior” of the agents, for the deter-by elementary calculus as follows. Once equilibrium has
ministic case takes only two values=1 (C) or 0 (D) while been reached, the transitions from D to C, on average, must
for the stochastic casg is a real variable=[0,1]. equal those from C to D. Thus, the average probability of
The pairs of players are chosen randomly instead of beingooperatiorc, is obtained by equalizing the flux from C to
restricted to some neighborhood. The implicit assumption®, Jcp, to the flux from D to CJpc . The players who play
behind this are that the population is sufficiently large andC either they getR (in [C,C] encountersor S (in [C,D]
the system connectivity is high. In other words, the agente€ncounters and their estimate isc=R; thus, according to
display high mobility or they can experiment interactions at athe update rule, they change to DR u or S<maxR,u},
distance(for example, electronic transactions, gtFhis im-  respectively. For a given average probability of cooperation
plies thatN,4, the number of agents, needs to be reasonablg, [C,C] encounters occur with probability’ and[C,D] en-
large. For instance, in the simulations presented in this workounters with probabilityc(1—c). Consequently]cp can
the population of agents will be fixed té,,=1000. be written as
The update rule for the, of the agents is based on com-

A. Deterministic version

2
parison of their utilities with an estimate. The simplest esti- Jep*accC”+acpc(1-0), ®
matee, that agent numbét can make for his expected utili- with
ties in the game is provided by the utilities he would make
by playing with himsef that is: acc=0(u—R) and acp=6(maxR,ul—S), (9)
eRSTRE) = (R—S—T+P)cy(t)2+ (S+T—2P)c(t) + P, where 0(x) is the step function given by
6
© 1 if x=0
=0 it x<o. (19

wherec is the probability that in the game the agémilays
C. From Eq.(6) we see that the estimates for C agerdg (

=1) ec and D agentsd,=0) ep are given by On the other hand, the players who play D either they get

T (in [D,C] encountersor P (in [D,D] encountersand their
estimate isep=P; thus, according to the update rule, they
ec=R, e=P. (7) change to C ifT<maxXu,P} or P<u, respectively. A$D,C]
encounters occur with probability (ic)c and[D,D] en-
The measure of success we consider here is slightly difeounters with probability (+c)?, Jcp can be written as
ferent from the one considered in REL7]: To measure his
success each player compares his ptdfitt) with the maxi- Jpc*apc(1-c)c+app(1-c)?, (11)
mum between higstimatee,(t), given by Eq.(6), and the )
arithmetic meanRgi F,the four pay(e);fgwgiven hy=(R+s  With
+T+P)/441f URRTHE) =(<)maxX .} the player as- _ _
sumes he is doi:flg welbadly) and ﬁe keeps$changes his app=0(u—P) and apc=6(maxP,u}—T). 12
ci(t) as follows: if playerk did well he assumes hig(t) is
adequate and he keeps it. On the other hand, if he did badiy equilibrium
he assumes hig, is inadequate and he change#fiibm C to
D or from D to C in the deterministic versi@gn Jen(Ceq) =JIpc(Ceg) (13
We are interested in measuring the average probability of
cooperatiorc vs time, and in particular in its value of equi- and thus we get a set of second-order algebraic equations for
librium c.q, after a transient which is equivalent to the final c,:
fraction of C agentd..
(acc—acp™t aDC_aDD)C§q+(aCD_aDC+ 2app)Ceq
30One might consider more sophisticated agents which have —app=0. (14)

“good” information (statistics, surveys, ejcfrom which they can I -
extract the average probability of cooperation at “real tinaét) to As there are two possibilities for each coefficienty, we

get a better estimate of their expected utilities. However, the mairhave, a total Of 2,: 16 different equations governmg all th_e

results do not differ from the ones obtained with this simpler agents_poss'bIe eqUII!b_rlum Stat_e(SiCtua”y there are 15 since this
“The reason to include the meanis to cover a wider range of mcludes the trivial equation®0). The roots of these equa-

situations than the ones permitted by the so-caRedlovsrule.  tions are

Pavlov strategy consists in sticking to the former move if it earned

one of the two highest payoffs but to switch in the contrary case.

The measure considered here reduces to it WwRemu>P. 5The real rootse[0,1].
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0 B. Stochastic version
3—5 In the case of a continuous probability of cooperatiQn
— the calculation is a little bit more subtle: now the estimgte

for the agentk is not only R or P, as it happened in the
12 discrete case, but it can take a continuum of values as the
J5-1 probability ¢, varies in the interval0,1]. From now on we

- will use the estimate as given in E@), but instead of &,
as a function of time we will use a geneicthat is a func-
(15)  tion of the cooperation probabilitiand implicitly of time, of

. . course, that is,
In addition, we have to take into account the case when

acc=app=0 eRSTRC)=(R—S—T+P)c(t)2+(S+T—2P)c(t)+P.
(18)

=Y

acp=apc=1. (16)

In this case we can see from E) and (11) that Jop  So we have

=Jpc identically, so we have thapg,=c, (¢, being the

initial mean probability, whatever the initial conditions are. eRSTRE) = RSTRe (D). (19)
For instance, for the canonical payoff matrix we have

3cc=0=apc andacp=1=app, therefore we get To calculatec,, we begin by writing a balance equation for

Coq(1—Cog =(1—Ceg)?, (17)  the probabilityci(t). The agents will follow the same rule as
before: they will keep their state if they are doing w@ll the
with the rootceq=1/2 corresponding to the stable dynamic sense explained earlieand otherwise they will change it. If
equilibrium in which the agents change their state in such &wo agentd andj play at timet, with probabilitiesc;(t) and
way that, on average, half of the transitions are from C to Dcj(t), respectively, then the change in the probability
and the other half from D to C. provided he knows;(t), would be given by

ci(t+1)—ci(t)=—ci(t)c(H[1— B(R— e*°THci(1)) B(R— ) ] - ci(D[1—c;(1)]
X[1-6(S— €T ci(1))) 6(S— )]
+H[1=ci(t)]ej(t) [1— 0T —eR*5TRei(1))) (T — )]

+H[1-ci()I[1—c(H][1— 6(P—€*5Tci(1))) o(P—w)], (20)
|
¢ being the step function. The equation of evolutiondg(t) 6(3—€3%°%c))=1 Vce[0,1],
is obtained by simply exchanginig— j in Eq. (20). Cer-
tainly, the assumption that each agent knows the probability 60— €3°%Y(c))=0 Vce[0,1], (22
of cooperation of his opponent is not realistic. Later, when
we perform the simulations, we will introduce a procedure to 0(5—€3%%Yc))=1 Vc e[0,1],
estimate the opponent’s probabilitynore on this in Sec.
VB) 0(1—3°5c))=0 Vc e(0,1].

In Eqg. (20) if at time t the payoff obtained by agemt X

(=R,S,T, or P), is less than ma¢*°Tci(1)), u}, the first |y addition we have for this cage=2,25, thus
two terms on the right-hand side decrease the cooperation

probability of agenti, while the two last terms increase it. 0(3—u)=1,
The terms give no contribution if the payoffis greater than
ST
or equal to mafe™S™c;(t)), u}. 0(0— u)=0, 23)

We will use the canonical payoff matri 3% to illustrate
how the above equation of evolution foi(t) works. In this

case, the estimate function is, by EG8) 05-mw=1,
0(1—pn)=0.
€35 c)=—c?+3c+1, (21) (1w
We can then write, to a very good approximatiome are
thus it is easy to see that assuming that the last line of E@®?2) is valid forc=0 alsd,
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ci(t+1)—ci()=—ci([1-cy()]+[1—-ci(t)][1-c;(t)]

=[1-cy()][1—2¢i(t)] Vi#]. (24
Defining the mean probability of cooperation as
1 Reo
c=— >, Ci, (25
Nag i=1

summing Eq.24) overi andj leads to

c(t+1)—c(t)=[1—c(t)][1—2c(t)]=1—3c(t) +c(t)?,
(26)

within an error ofO(1/N,g) since Eq.(24) is valid V i#j
but we are summing over all thé, agents.

PHYSICAL REVIEW E 69, 036110 (2004

original equilibrium values for the equations competing. We
will analyze some particular cases of this type in Sec. VB to
illustrate this point.

Although at first sight one may think that the universe of
possibilities fulfilling condition(33) is very vast, it happens
that no more than three different balance equations can co-
exist. This can be seen as follows: from E¢&1l) and (32),
eRS"P=maxRP}, and besides we know that the estimate
never could be greater than all the payoffs, so there is at least
one X such thateha1 "< X. So this leaves us with only two
payoffs that effectively can be betwegnand X517, and
this results in at most three balance equations playing in a

given game.

Thereof we can calculate the equilibrium mean probabil-lv. AN EXAMPLE OF COEXISTENCE OF AGENTS USING

ity of cooperationceq:

0=1-3c(t)+c(t)? (27
obtaining the two roots
1
Cea™ | 112 28

Ceq
result as that in the deterministic case.

DIFFERENT PAYOFF MATRICES: COOPERATION IN
PRESENCE OF “ALWAYS D” AGENTS

Let us analyze now the situation where there is a mixing
of agents using two different payoff matrices, each leading
separately to a different value of ;. For simplicity we con-
sider the deterministic version but the results for the stochas-
tic version are similar. We call antisocial individuals those

= 1/2 being the stable solution. Hence we obtain the samér Whom cooperation never pays and thus, although they

can initially be in the C state, after playing they turn to state

clude that if
X[ 1, €man (29
or
B> €max (30)

by players using a payoff matrix that always updateto O;

for instanceM %3 Notice that these individuals are basically
different from those which use a payoff matrix fulfilling con-
ditions (1) and(2) who, even though they realize the value of
cooperation, i.e.,R>P and R>T+S, often may be
tempted to “free ride” in order to get a higher payoff. How-
ever, with the proposed mechanism—which implies a sort of

the results for the mean cooperation probability for the deindirect reciprocity—when D grows above 50% it punishes,
terministic version and the stochastic version are the sameon average, this behavior more than C favoring thus a net

There is an easy way to evalua@s, "
be seen—see the Appendix—that if
1 (S+T-2P)2
4 (R-S-T+P)
(31

in practice. It can

S+T>2maXR,P! =eSTP=p

max

while, if
S+T<2maXR,P} =eR3TP=maxR,P}.

max

(32

When there is a payoi such that

RST
Xe[m, €max

(33

things can change because agents whoXgepdate in gen-
eral their probability of cooperatior(t) differently depend-
ing whetherX<e(c;) or X=¢€(c;). So as the probability
takes different values in the intervid, 1], we have different

flux from D to C. Conversely, if C grows above 50% it
punishes, on average, this behavior more than D favoring
thus the opposite flux from C to D. In other words, small
oscillations around = 0.5 occur. On the other hand, agents
using M %2 are “immune” to the former regulating mecha-
nism. Let us analyze the effect they have on cooperation
when they “contaminate” a population of neutral agefus-

ing the canonical payoff matrixIn short, the two types of
individuals play different gamespecified by different pay-
off matrices without knowing this fact, a situation which
does not seem too far from real life.

The asymptotic average probabilities of cooperation can
be obtained by simple algebra combining the update rules for
M3%1and M 1953 The computation is completely analogous
to the one which leads to E¢L7). We have to calculatéyc
andJcp as a function of the variable and the parameteat
and by equalizing them at equilibrium we get the equation

equations of evolution, which somehow “compete” againstfOr Ceq- T0 Joc only contribute the fraction (d) of nor-
each other in order to reach the equilibrium. The differentM@l players using the canonical payoff matrix who play D
equations that can appear are of course restricted to the on@g@inst a player who also plays @ormal or antisocial

generated by the coefficientsy as they appear in Eq14).

hat is,Jpc is given by

It is reasonable to expect then that the final equilibrium value

for the mean probability will be somewhere in between the

Jocx(1—d)(1—c)2 (34)
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TABLE 1. ¢, for agents using/13°>! contaminated by a fraction
d of antisocial agents usini %3

Ceq(d=0.0)=0.5000
Ceq(d=0.1)=0.4538
Ceq(d=0.2)=0.4123
Ceq(d=0.3)=0.3727
Ceq(d=0.4)=0.3333
Coq(d=0.5)=0.2929
Coq(d=0.6)=0.2500
Ceq(d=0.7)=0.2029
Ceq(d=0.8)=0.1492
Ceq(d=0.9)=0.0845
Ceq(d=1.0=0.0

On the other hand, contributions .5 come from one of
these three types of encounte(is:[C,D] no matter if agents
are neutral or antisocialji) [C,C] of two antisocial agents,
and (iii ) [C,C] of a neutral and antisocial agefthe neutral
agent remains C and the antisocial, who startetd=d play-
ing C and has not played yet, changes from C {o The
respective weights of these three contributions&re-c),
d?c?, and12d(1—d)c?. ThereforeJcp is given by

Jep*c(1—c)+d?c?+d(1—d)c?=c(1—c)+dc?
(39

In equilibrium Jpc=Jcp and the following equation foc,
arises:

(1-d)(2¢5;— 2Ceqt 1) +Ceq=0, (36)
and solving it we get
3-2d=\—-4d’+4d+1
Coq— . (37

4(1-d)

We must take the roots with the—" sign because those
with “ +” are greater than 1 for non-null values df We

thus get Table | forc, for different values of the parameter

d.

V. SIMULATIONS

A. Deterministic version

In this section we present some results produced by simu ¢
lation for the deterministic version. Different payoff matrices ,,
were simulated and it was found that the system self-
organizes, after a transient, in equilibrium states in total

agreement with those calculated in E5).
The update front;(t) to ¢c;(t+1) was dictated by a bal-

ance equation of the kind of Eq20). The measures are

performed over 1000 simulations each ang denotes the

average ot over these milliard of experiments. In order to
show the independence from the initial distribution of prob-
abilities of cooperation, Fig. 1 shows the evolution with time

PHYSICAL REVIEW E69, 036110 (2004

0.9 1
0.8 - i
0.7 1
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<P> 05

0.4 b

2000 3000 4000

time

0 1000 5000
FIG. 1. c vs time, for different initial values of -y, for the
canonical payoff matrix.

Depending on the payoff matrix the equilibrium
asymptotic states can be of three types: of “all CCqf
=1.0, “all D" ( c¢q=0.0 or something in between {0c,
<1).

We have seen that the canonical payoff maix’>* pro-
vides an example of matrix which giveg,=0.5.

Let us see examples of payoff matrices which produce
other values ofc.q. A payoff matrix which produceg,
=1.0 is obtained simply by permuting the canonical values
of S(0) andT (5), i.e., ML For this matrix we have, by
inspection of Eqs(9) and (12),

aCC:aCDZO, aDC:aDD:].. (38)

Hence, after playing the PD game the pair of agents always
ends[C,C] sinceJ-p=0 by Eq.(8).

On the other hand, a payoff matrix which leagis=0.0
is obtained simply by permuting the canonical valuesRof
(3) andP (1), i.e., M5 for which

1 T T T
09 r ]
08 r ]
0.7 r R

0.5
0.4 i

02 1
01 | ]

4000 6000 8000

iterations

0 2000 10000

FIG. 2. Curves ofc vs time for different payoff matrices pro-

of the average probability of cooperation for different initial ducing the five possible values of, (from below to abov payoff
proportions of C agent$c, for the case of the canonical matrices M®*°* with coq=1, M209q1 with Cq=0.62, M3%! with

payoff matrixM3%! (i.e., R=3,5=0,T=5, andP=1).

Ceq= 0.5, M1 with c.(=0.38, andM % with c.,=0.
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0.55 L . . . . Exchanging for j in this equation gives the estimate of the
0.5 probability c;(t) that makes agerjt Equation(41) can re-
€ trieve any value oE}(t) and not just in the intervdl0,1], so

0.45
04 E it is necessary to make the following replacements:
0.35 : if C()>1 = (=1
0.3 1
<> - —
0.25 andif ¢;(t)<0 = c¢j(t)=0. (42
0.2 . . :
When this happens, the agent is making the roughest ap-
015 proximation, which is to assume that the other player acts
0.1 ] like in the deterministic case.
0.05 1 For the canonical payoff matrix, the result was the ex-

. . . pected one as this is a matrix obeying conditi@9): as

0 1000 2000 3000 4000 5000 predicted by the analytical calculation of Sec. Il B, the value
time for the equilibrium mean probability is.,=1/2 as in the

deterministic case, despite the change introduced irf4g;.

Simulations for other payoff matrices satisfying conditions

(29) or (30) were also made and in all the cases the deter-

ministic results were recovered.

We will illustrate the case in which some

FIG. 3. The evolution of with time, for different values of the
fraction d “antisocial” agents(using M1%% embedded in a popu-
lation of neutral agent&using the canonical payoff matjix

acc=acp=1, apc=app=0. (39
Xelm emax (43
That is, all the changes are from C to D since in this case
Jpc=0. o with two particular examples. One of them is the case of the
The rate of convergence to the possible values.gfde-  normalized matrixM***, with Svarying from 1 to 2, both
pends on the values dfp andJpc. limiting cases in which conditio43) ceases to be valid. So

Figure 2 shows the approach of the average probability ofor S<1 the update equation is given simply by
cooperation for different payoff matrices to their final five
equilibrium values. Ci(t+1)—ci(t)=[1—ci(t) ][1—c;j(1)] (44)
Finally, we simulated the mixing of agents using payoff
matrices M3%! and M1%%3 The evolution to equilibrium With Ceq=1 in this case, while fo6>2,
states for different fixed fractions of agents usingv'%*%is

presented in Fig. 3. The results are in complete agreement Ci(t+1)—ci(t)=1—ci(t)—ci(t)ci(t) (45
with the asymptotic probabilities of cooperation which ap- ) ) _ o
pear in Table I. for which ceqz(\/g—l)/Z is the corresponding equilibrium

value. WhenSe (1,2], both balance equations play a role;
the general equation for the update follows from E20)
applied to this particular case:

In this case simulations were made updating the probabil-
ity of cooperation according to Eq20). However, as we Ci(t+1)—ci()=[1—ci()][1—c;(t)]+[c;(t)
anticipated, we have to change slightly this equation to re-
flect reality: two agent$ andj interact and they obtain the 2¢O (D1 0(1—€)]. (46
payoffsX; andX;, respectively. For each of them there is no
way, from this only event, to know the probability of coop- S° We can see that fék=T=1=¢, Eq.(46) reduces to Eq.
eration ¢, of his opponent. What they can do then is to (44) while if R=T=1<e we obtain Eq.(45).~.When the
(roughly) estimate thisc, as follows. The playei average Simulation takes place; has to be replaced by, .
utility in an encounter at timé with agentj is given by The same analysis can be done for the matridesT™,

with T varying from 1 to 2 also. In this case the other root
Uij(=Rag(t)c(t) +S g(H)[1—c;]+T[1—ci(t)]c;(t) competing WithCeq=1 is Coq=(3— \/5)/2.

The results of the simulations for both cases are presented

B. Stochastic version

+P[1-ci(t)][1—c5(D)]. (40 in Table II, and data fo6>2 andT>2—for which Eq.(29)
, -~ is valid—are also includef.
When he plays he gets the paydlf, so his best estimatg As it can be seen from the data, foxX<2, that is,
for the probability of agent is obtained by replacingj(t)  \when condition(43) is valid, the results for the stochastic
for X; in Eq. (40). Then he will have case are the same as they would be if we were working with

X;—P+c(t)(P—9)
CG(O(R-S—T-P)+T—P"

ci(t)= (41)

60_6,1| corresponds to the average @f, over 100 experiments.
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TABLE II. Equilibrium values for different normalized payoff rium states with:eq;éo, provided thatP < u—see Eqs(8)-

matrices. (13).

— — (3) Any value of equilibrium average cooperation can be
X Ceq fOr X=S Gq for X=T reached in principle, even in the case of the deterministic
1 1 1 model, by the appropria’ge (nixing. of ager_1ts using two differ-
15 1 1 ent payoff matrices. Th|s is an interesting resul_t that goes
19 1 1 beyon_d tht_a dlﬁ_erenF existent s_omal settings. For instance we
5 1 1 h_ave in mmﬁ S|f[uat|or_1t?] in whlch or:e Wintts;]tc: detglg_n a de-

vice or mechanism with a given value of, that optimizes

2.1 0.617 0.383 its performance. ’
4 0.581 0.370 (4) In this work we adopted anean fieldapproach in
8 0.556 0.403 which all the spatial correlations between agents were ne-
16 0.530 0.467

glected. One virtue of this simplification is that it shows the
1000 0.548 0.455 model does not require that agents interact only with those
within some geographical proximity in order to sustain co-
operation. Playing with fixed neighbors is sometimes consid-

the deterministic model. This is a consequence of the esti- , . . o
mate(41) together with conditiong42). ered as an important ingredient to successfully maintain the

For values ofT andS greater than 2, for which condition cooperative regim¢16,19. (Additionally, the equilibrium

. _points can be obtained by simple algebra.
(43) does not ho!d anymore, we can observe th"‘t .at f'rSP To conclude we mention different extensions and applica-
may seem a curiosity: foll or S near 2, the equilibrium

| for the deterministi 4 tti ns of this model as possible future work. We mentioned, at
\éatues or the de errrg;]nls |c|casgb?resr'ei:rc]>verel as ;expec 'e beginning, “statistical mechanic” studies. For instance,

ut as we increase he vajues bior € value OlCeq by dividing the four payoffs between say the rew&de-
=1/2 is approached. After a little thought, it is clear that this

is al f th timati f . it duces the parameters to three=S/R, b=T/R, and d
IS alSo a consequence of the estimation o ed), sihce | =P/R, and we are interested in analyzing the dependence of
depends on the payoffs. It can be easily seen that in the ca

of M1SLO ?:Sq on each one of these three parameters in the vicinity of a

' transition between two different values. It is also interesting
to introduce noise in the system, by means of an inverse
temperature parametgr; in order to allow irrational choices.
The playeri changes his strategy with a probability; given

if T>1 thenc;=0 Vi,j (forX#T). (47

If we take thenc;=0 in Eq.(20), and remembering that b
— oo implies thatu— 0, we will obtain thatc.,=1/2. In an y
analogous way foM 1510,

1
- W, = —,
if S>1 thencj=1 Vi,j (forX;#S) (48 ' 1+exgB(U—€)]

which together with Eq(20) again leads ta.q=1/2. The Where;izmax{ei )

encounters for whiclX;=S or T are responsible for that the We are planning also a quantum extension of the model in
exact valuee, = 1/2 is not attained. A similar analysis can be order to deal with players which use superposition of strate-

done wherR or P— o, giesac|C)+ ap|D) instead of definite strategies.
The study of the spatial structured version and how the
VI. SUMMARY AND OUTLOOK different agents lump together is also an interesting problem

to consider. Results on that topic will be presented else-

The proposed strategy, the combination of measure oOfyhere.
success and update rule, produces cooperation for a wide Finally, a test for the model against experimental data
variety of payoff matrices. _ seems interesting. In the case of humans the experiments

In particular, we notice that the following facts. suggest, for a given class of ganies., a definite rank in the

(1) A cooperative regime arises for payoff matrices repreorder of the payoffs a dependency of with the relative
senting “social dilemmassuch as the canonical one. On the weights of R,S, T, and P, which is not observed in the
other hand spatial game algorithms such as the one of Refresent model. Therefore, we should change the update rule

[16] produce cooperative statese(>0) in general for the in such a way to capture this feature. Work is also in progress
case of a “weak dilemma” in which® = S= 0 or at most in that direction.

whenP is significantly belowR.’
_ (2) Payoff matrices wittR=S=0 which, at least in prin- APPENDIX: CALCULUS FOR THE MAXIMUM
ciple, one would bet that favor D, actually generate equilib- OF THE GAIN ESTIMATE FUNCTION IN THE

STOCHASTIC CASE

“In particular, in a spatial game in which each player interacts We will now show in detail the calculus for the maximum
with his four nearest neighbors, we have checked that the canonic@lf the gain estimate functioa®STHc), restricted to the in-
payoff matrix leads to the an “all D” state withe,=0. terval [0,1]. First we have to know if the function has a
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maximum in the open interval (0,1). This can be done byso this inequality resumes Eq#1) and(A4). It can be seen
noticing that, by Eq(18), for having negative concavity, we that if Eq. (A5) is fulfilled, eRSTP= 1, always.
have the condition So if condition(A5) holds, the maximum of the function

e"STRc) takes place in the interval (0,1) and its value as a

R—S—T+P<O0. (A1) function of the parameter®,S, T, andP is
By doing RSTP_ 1 (S+T-2P)° A6
q fmax “T T 4 (R=S-T+P)’ (A6)
RSTP.
d—E =0 (AZ)
c On the other hand, if
we find that the extremum af*STRc) is attained at S+T<2 maxR,P} (A7)
B 1 (S+T-2P) A3 then
Com T2 (R-5-T+P) A3
RSTP_
Imposingc,>0, c,<1, and using Eq(A1) for consistency, €max ~ MaxXR.P} (A8
we obtain sincee®STH0)=P, e*5TH1)=R.
S+T>2P, S+T>2R. (A4) Similar conditions can be obtained for the minimum of

. RST . . .
Notice that the sum of these two conditions is equivalent tothe function €™°f(c) within the interval[0,1]. It can be

condition(Al). In turn, Eq.(A4) can be expressed as shown that ifS+T<2 min[RP), the expression ifAG) is a
’ minimum instead of a maximum, and thafs ’=<u. If S

S+T>2maxR,P} (A5)  +T=2minRP), thene>TP=minR P).
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