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Self-organization in a simple model of adaptive agents playing 2Ã2 games
with arbitrary payoff matrices
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We analyze, both analytically and numerically, the self-organization of a system of ‘‘selfish’’ adaptive agents
playing an arbitrary iterated pairwise game~defined by a 232 payoff matrix!. Examples of possible games to
play are theprisoner’s dilemma~PD! game, thechickengame, theherogame, etc. The agents have no memory,
use strategies not based on direct reciprocity nor ‘‘tags’’ and are chosen at random, i.e., geographical vicinity
is neglected. They can play two possible strategies: cooperate~C! or defect~D!. The players measure their
success by comparing their utilities with an estimate for the expected benefits and update their strategy
following a simple rule. Two versions of the model are studied:~1! the deterministic version~the agents are
either in definite states C or D! and ~2! the stochastic version~the agents have a probabilityc of playing C!.
Using a general master equation we compute the equilibrium states into which the system self-organizes,
characterized by their average probability of cooperationceq . Depending on the payoff matrix, we show that
ceq can take five different values. We also consider the mixing of agents using two different payoff matrices
and show that any value ofceq can be reached by tuning the proportions of agents using each payoff matrix.
In particular, this can be used as a way to simulate the effect of a fractiond of ‘‘antisocial’’ individuals—
incapable of realizing any value to cooperation—on the cooperative regime hold by a population of neutral or
‘‘normal’’ agents.

DOI: 10.1103/PhysRevE.69.036110 PACS number~s!: 89.75.Fb, 87.23.Ge, 89.65.Gh
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I. INTRODUCTION

Complex systems pervade our daily life. They are diffic
to study because they do not exhibit simple cause-and-e
relationships and their interconnections are not easy to
entangle.

Game theory has been demonstrated to be a very flex
tool to study complex systems. It coalesced in itsnormal
form @1# during the second World War with the work of vo
Neumann and Morgenstern@2# who first applied it in eco-
nomics.

Later, in the 1970s, it was the turn of biology mainly wi
the work of Maynard-Smith@3#, who showed that the gam
theory can be applied to various problems of evolution, a
proposed the concept of evolutionary stable strategy~ESS!,
as an important concept for understanding biological p
nomena. Following rules dictated by game theory to attain
ESS requires neither consciousness nor a brain. Moreov
recent experiment found that two variants of a RNA vir
seem to engage in two-player games@4#.

This opens a new perspective, perhaps the dynami
very simple agents, of the kind we know in physics whi
can be modeled by game theory providing an alternative
proach to physical problems. For instance, energies coul
represented as payoffs and phenomena such as phase t
tions understood as many-agent games. As a particular a
cation of this line of thought we have seen recently a pro
eration of papers addressing the issue ofquantum games
@5–8# which might shed light on the hot issue of quantu
computing. Conversely, physics can be useful to unders
the behavior of adaptive agents playing games used to m
several complex systems in nature. For instance, in s
1063-651X/2004/69~3!/036110~9!/$22.50 69 0361
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interesting works Szabo´ et al. @9,10# applied the sophisti-
cated techniques developed in nonequilibrium statist
physics to spatial evolutionary games.

The most popular exponent of game theory is theprison-
er’s dilemma~PD! game introduced in the early 1950s b
Flood and Dresher@11# to model the social behavior o
‘‘selfish’’ individuals—individuals who pursue exclusivel
their own self-benefit.

The PD game is an example of a 232 game in normal
form: ~i! there are two players, each confronting tw
choices—to cooperate~C! or to defect~D! ~ii ! with a 232
matrix specifying the payoffs of each player for the fo
possible outcomes:@C,C#,@C,D#,@D,C#, and @D,D#1, and ~iii !
each player makes his choice without knowing what
other will do. A player who plays C gets the ‘‘reward’’R or
the ‘‘sucker’s payoff’’S depending if the other player play
C or D respectively, while if he plays D he gets the ‘‘tem
tation to defect’’T or the ‘‘punishment’’P depending if the
other player plays C or D, respectively. These four payo
obey the relations

T.R.P.S ~1!

and

2R.S1T. ~2!

Thus independently of what the other player does, by Eq.~1!,
defection D yields a higher payoff than cooperationC (T
.R and P.S) and is thedominant strategy. The outcome

1@X,Y# means that the first player plays X and the second pla
plays Y ~X and Y5C or D!.
©2004 The American Physical Society10-1
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H. FORT AND S. VIOLA PHYSICAL REVIEW E69, 036110 ~2004!
@D,D# is thus called a Nash equilibrium@12#. The dilemma is
that if both defect, then both do worse than if both had
operated (P,R). Condition~2! is required in order that the
average utilities for each agent of a cooperative pair~R! are
greater than the average utilities for a pair exploitative
ploiter @(T1S)/2#.

Changing the rank order of the payoffs—the inequalit
~1!—gives rise to different games. A general taxonomy
232 games~one-shot games involving two players with tw
actions each! was constructed by Rapoport and Guyer@13#.
A general 232 game is defined by a payoff matrixMRSTP

with payoffs not necessarily obeying the conditions2 ~1! or
~2!

MRSTP5S ~R,R! ~S,T!

~T,S! ~P,P!
D . ~3!

The payoff matrix gives the payoffs forrow actions when
confronting withcolumnactions.

Apart from the PD game there are other some well stud
games. For instance, when the damage from mutual de
tion in the PD is increased so that it finally exceeds
damage suffered by being exploited,

T.R.S.P, ~4!

the new game is called thechickengame. Chicken is name
after the car racing game. Two cars drive towards each o
for an apparent head-on collision. Each player can swerv
avoid the crash~cooperate! or keep going~defect!. This
game applies thus to situations such that mutual defectio
the worst possible outcome~hence an unstable equilibrium!.

When the reward of mutual cooperation in the chick
game is decreased so that it finally drops below the los
from being exploited,

T.S.R.P, ~5!

it transforms into theleader game. The name of the gam
stems from the following every day life situation: Two c
drivers want to enter a crowded one-way road from oppo
sides, if a small gap occurs in the line of the passing car
is preferable that one of them takes the lead and enters
the gap instead of that both wait until a large gap occurs
allows both to enter simultaneously.

In fact, every payoff matrix, which at a first glance cou
seem unreasonable from the point of view of selfish in
viduals, can be applicable to describe real life situations
different realms or contexts. Furthermore, ‘‘unreasonab
payoff matrices can be used by minorities of individua
which depart from the normal ones~assumed to be neutra!
for instance, absolutely D individuals incapable of realizi
any value to cooperation or absolutely C ‘‘altruistic’’ ind
viduals ~more on this later!.

In one-shot or nonrepeated games, where each playe
a dominant strategy, as in the PD, then generally these s

2We will maintain the lettersR,S,T, or P to denote the payoffs in
order to keep the PD standard notation.
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egies will be chosen. The situation becomes more interes
when the games are played repeatedly. In theseiterated
gamesplayers can modify their behavior with time in orde
to maximize their utilities as they play, i.e., they can ado
different strategies. In order to escape from the noncoop
tive Nash equilibrium state of social dilemmas it is genera
assumed either memory of previous interactions@14# or fea-
tures~‘‘tags’’ ! permitting cooperators and defectors to dist
guish one another@15#; or spatial structure is required@16#.

Recently, a simple model@17# of selfish agents was pro
posed without memory of past encounters, without tags
with no spatial structure playing an arbitrary 232 game,
defined by a general payoff matrix such as Eq.~3!. At a given
time t, each of theNag agents, numbered by an indexi, has a
probabilityci(t) of playing C@12ci(t) of playing D#. Then
a pair of agents are selected at random to play. All the pl
ers use the same measure of success to evaluate if the
well or badly in the game which is based on a comparison
their utilities U with an estimate of the expected incomee
and the arithmetic mean of payoffsm[(R1S1T1P)/4.
Next, they update theirci(t) in consonance, i.e., a playe
keeps hisci(t) if he did well or modifies it if he did badly.

Our long term goal is to study the quantum and statisti
versions of this model, that is, on one hand to compare
efficiency and properties of quantum strategies vs the cla
cal ones for this model in a spirit similar to that of Ref.@5#.
On the other hand, we are also interested in the effec
noise, for instance by introducing a Metropolis Monte Ca
temperature, and the existence of power laws in the spac
payoffs that parametrize the game, of the type found in R
@9,10#, for a spatial structured version of this model. Befo
embarking on the quantum or statistical mechanics of
model, the objective in this paper is to complete the study
the simplest nonspatial mean field version. In particular,
present an analytic derivation of the equilibrium states
any payoff matrix, i.e., for an arbitrary 232 game using
elemental calculus, both for the deterministic and stocha
versions. In the first case the calculation is elementary
serves as a guide to the more subtle computation of the
chastic model. These equilibrium states into which the s
tem self-organizes, which depend on the payoff matrix,
of three types: ‘‘universal cooperation’’ or ‘‘all C,’’ of inter-
mediate level of cooperation and ‘‘universal defection’’
‘‘all D’’ with, respectively, ceq51.0, 0,ceq,1.0 and 0.0.
We also consider the effect of mixing players using two d
ferent payoff matrices. Specifically, a payoff matrix produ
ing ceq50.0 and the canonical payoff matrix are used
simulate, respectively, absolutely D or ‘‘antisocial’’ agen
and ‘‘normal’’ agents.

II. THE MODEL

We consider two versions of the model introduced in R
@17#. First, a deterministic version, in which the agents a
always in definite states either C or D, i.e., ‘‘black an
white’’ agents without ‘‘gray tones.’’ Nevertheless, it is ofte
remarked that this is clearly an oversimplification of the b
havior of individuals@18#. Indeed, their levels of cooperatio
exhibit a continuous gamma of values. Furthermore, co
0-2
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SELF-ORGANIZATION IN A SIMPLE MODEL OF . . . PHYSICAL REVIEW E 69, 036110 ~2004!
pletely deterministic algorithms fail to incorporate th
stochastic component of human behavior. Thus, we cons
also a stochastic version, in which the agents only have p
abilities for playing C. In other words, the variableci , de-
noting the state or ‘‘behavior’’ of the agents, for the det
ministic case takes only two valuesci51 ~C! or 0 ~D! while
for the stochastic caseci is a real variableP@0,1#.

The pairs of players are chosen randomly instead of be
restricted to some neighborhood. The implicit assumpti
behind this are that the population is sufficiently large a
the system connectivity is high. In other words, the age
display high mobility or they can experiment interactions a
distance~for example, electronic transactions, etc.!. This im-
plies thatNag , the number of agents, needs to be reasona
large. For instance, in the simulations presented in this w
the population of agents will be fixed toNag51000.

The update rule for theck of the agents is based on com
parison of their utilities with an estimate. The simplest es
mateek that agent numberk can make for his expected utili
ties in the game is provided by the utilities he would ma
by playing with himself3 that is:

ek
RSTP~ t !5~R2S2T1P!ck~ t !21~S1T22P!ck~ t !1P,

~6!

whereck is the probability that in the game the agentk plays
C. From Eq.~6! we see that the estimates for C agentsck
51) eC and D agents (ck50) eD are given by

eC5R, eD5P. ~7!

The measure of success we consider here is slightly
ferent from the one considered in Ref.@17#: To measure his
success each player compares his profitUk(t) with the maxi-
mum between hisestimateek(t), given by Eq.~6!, and the
arithmetic mean of the four payoffs given bym[(R1S
1T1P)/4.4 If Uk

RSTP(t)>(,)max$ek
RSTP,m% the player as-

sumes he is doing well~badly! and he keeps~changes! his
ck(t) as follows: if playerk did well he assumes hisck(t) is
adequate and he keeps it. On the other hand, if he did b
he assumes hisck is inadequate and he changes it~from C to
D or from D to C in the deterministic version!.

We are interested in measuring the average probabilit
cooperationc vs time, and in particular in its value of equ
librium ceq , after a transient which is equivalent to the fin
fraction of C agentsf C .

3One might consider more sophisticated agents which h
‘‘good’’ information ~statistics, surveys, etc.! from which they can
extract the average probability of cooperation at ‘‘real time’’c(t) to
get a better estimate of their expected utilities. However, the m
results do not differ from the ones obtained with this simpler age

4The reason to include the meanm is to cover a wider range o
situations than the ones permitted by the so-calledPavlov’s rule.
Pavlov strategy consists in sticking to the former move if it earn
one of the two highest payoffs but to switch in the contrary ca
The measure considered here reduces to it whenR.m.P.
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III. COMPUTATION OF THE EQUILIBRIUM STATES

A. Deterministic version

For the deterministic case the values ofceq are obtained
by elementary calculus as follows. Once equilibrium h
been reached, the transitions from D to C, on average, m
equal those from C to D. Thus, the average probability
cooperationceq is obtained by equalizing the flux from C t
D, JCD , to the flux from D to C,JDC . The players who play
C either they getR ~in @C,C# encounters! or S ~in @C,D#
encounters!, and their estimate iseC5R; thus, according to
the update rule, they change to D ifR,m or S,max$R,m%,
respectively. For a given average probability of cooperat
c, @C,C# encounters occur with probabilityc2 and @C,D# en-
counters with probabilityc(12c). Consequently,JCD can
be written as

JCD}aCCc21aCDc~12c!, ~8!

with

aCC5u~m2R! and aCD5u~max$R,m%2S!, ~9!

whereu(x) is the step function given by

u~x!5
1 if x>0

0 if x,0.
~10!

On the other hand, the players who play D either they
T ~in @D,C# encounters! or P ~in @D,D# encounters! and their
estimate iseD5P; thus, according to the update rule, the
change to C ifT,max$m,P% or P,m, respectively. As@D,C#
encounters occur with probability (12c)c and @D,D# en-
counters with probability (12c)2, JCD can be written as

JDC}aDC~12c!c1aDD~12c!2, ~11!

with

aDD5u~m2P! and aDC5u~max$P,m%2T!.
~12!

In equilibrium

JCD~ceq!5JDC~ceq!, ~13!

and thus we get a set of second-order algebraic equation
ceq :

~aCC2aCD1aDC2aDD!ceq
2 1~aCD2aDC12aDD!ceq

2aDD50. ~14!

As there are two possibilities for each coefficientaXY , we
have a total of 24516 different equations governing all th
possible equilibrium states~actually there are 15 since thi
includes the trivial equation 0[0). The roots5 of these equa-
tions are

e

in
s.

d
.

5The real rootsP@0,1#.
0-3
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0

32A5

2

1/2

A521

2

1. ~15!

In addition, we have to take into account the case wh

aCC5aDD50

aCD5aDC51. ~16!

In this case we can see from Eq.~8! and ~11! that JCD
[JDC identically, so we have thatpeq[co (co being the
initial mean probability!, whatever the initial conditions are

For instance, for the canonical payoff matrix we ha
aCC505aDC andaCD515aDD , therefore we get

ceq~12ceq!5~12ceq!
2, ~17!

with the rootceq51/2 corresponding to the stable dynam
equilibrium in which the agents change their state in suc
way that, on average, half of the transitions are from C to
and the other half from D to C.
ili
e
t

ti
t.

03611
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B. Stochastic version

In the case of a continuous probability of cooperationck ,
the calculation is a little bit more subtle: now the estimateek
for the agentk is not only R or P, as it happened in the
discrete case, but it can take a continuum of values as
probability ck varies in the interval@0,1#. From now on we
will use the estimate as given in Eq.~6!, but instead of aek
as a function of time we will use a generice that is a func-
tion of the cooperation probability~and implicitly of time, of
course!, that is,

eRSTP~c!5~R2S2T1P!c~ t !21~S1T22P!c~ t !1P.
~18!

So we have

ek
RSTP~ t !5eRSTP

„ck~ t !…. ~19!

To calculateceq we begin by writing a balance equation fo
the probabilityci(t). The agents will follow the same rule a
before: they will keep their state if they are doing well~in the
sense explained earlier! and otherwise they will change it. I
two agentsi and j play at timet, with probabilitiesci(t) and
cj (t), respectively, then the change in the probabilityci ,
provided he knowscj (t), would be given by
ci~ t11!2ci~ t !52ci~ t !cj~ t !@12u~R2eRSTP
„ci~ t !…!u~R2m!#2ci~ t !@12cj~ t !#

3@12u~S2eRSTP
„ci~ t !…!u~S2m!#

1@12ci~ t !#cj~ t ! @12u~T2eRSTP
„ci~ t !…!u~T2m!#

1@12ci~ t !#@12cj~ t !#@12u~P2eRSTP
„ci~ t !…!u~P2m!#, ~20!
u being the step function. The equation of evolution forcj (t)
is obtained by simply exchangingi ↔ j in Eq. ~20!. Cer-
tainly, the assumption that each agent knows the probab
of cooperation of his opponent is not realistic. Later, wh
we perform the simulations, we will introduce a procedure
estimate the opponent’s probability~more on this in Sec.
V B!

In Eq. ~20! if at time t the payoff obtained by agenti, X
(5R,S,T, or P), is less than max$eRSTP

„ci(t)…,m%, the first
two terms on the right-hand side decrease the coopera
probability of agenti, while the two last terms increase i
The terms give no contribution if the payoffX is greater than
or equal to max$eRSTP

„ci(t)…,m%.
We will use the canonical payoff matrixM3051to illustrate

how the above equation of evolution forci(t) works. In this
case, the estimate function is, by Eq.~18!

e3051~c!52c213c11, ~21!

thus it is easy to see that
ty
n
o

on

u„32e3051~c!…51 ; c P@0,1#,

u„02e3051~c!…50 ; c P@0,1#, ~22!

u„52e3051~c!…51 ; c P@0,1#,

u„12e3051~c!…50 ; c P~0,1#.

In addition we have for this casem52,25, thus

u~32m!51,

u~02m!50, ~23!

u~52m!51,

u~12m!50.

We can then write, to a very good approximation@we are
assuming that the last line of Eq.~22! is valid for c50 also#,
0-4
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SELF-ORGANIZATION IN A SIMPLE MODEL OF . . . PHYSICAL REVIEW E 69, 036110 ~2004!
ci~ t11!2ci~ t !52ci~ t !@12cj~ t !#1@12ci~ t !#@12cj~ t !#

5@12cj~ t !#@122ci~ t !# ; iÞ j . ~24!

Defining the mean probability of cooperation as

c5
1

Nag
(
i 51

Nag

ci , ~25!

summing Eq.~24! over i and j leads to

c~ t11!2c~ t !5@12c~ t !#@122c~ t !#5123c~ t !1c~ t !2,
~26!

within an error ofO(1/Nag) since Eq.~24! is valid ; iÞ j
but we are summing over all theNag agents.

Thereof we can calculate the equilibrium mean proba
ity of cooperationceq :

05123c~ t !1c~ t !2, ~27!

obtaining the two roots

ceq5H 1

1/2,
~28!

ceq51/2 being the stable solution. Hence we obtain the sa
result as that in the deterministic case.

Using analog reasoning for the general case, we can
clude that if

X¹@m,emax
RSTP# ~29!

or

m.emax
RSTP ~30!

the results for the mean cooperation probability for the
terministic version and the stochastic version are the sam

There is an easy way to evaluateemax
RSTP in practice. It can

be seen—see the Appendix—that if

S1T.2max$R,P% ⇒emax
RSTP5P2

1

4

~S1T22P!2

~R2S2T1P!
~31!

while, if

S1T<2max$R,P% ⇒emax
RSTP5max$R,P%. ~32!

When there is a payoffX such that

XP@m,emax
RSTP# ~33!

things can change because agents who getX update in gen-
eral their probability of cooperationci(t) differently depend-
ing whetherX,e(ci) or X>e(ci). So as the probability
takes different values in the interval@0,1#, we have different
equations of evolution, which somehow ‘‘compete’’ again
each other in order to reach the equilibrium. The differe
equations that can appear are of course restricted to the
generated by the coefficientsaXY as they appear in Eq.~14!.
It is reasonable to expect then that the final equilibrium va
for the mean probability will be somewhere in between
03611
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original equilibrium values for the equations competing. W
will analyze some particular cases of this type in Sec. V B
illustrate this point.

Although at first sight one may think that the universe
possibilities fulfilling condition~33! is very vast, it happens
that no more than three different balance equations can
exist. This can be seen as follows: from Eqs.~31! and ~32!,
emax

RSTP>max$R,P%, and besides we know that the estima
never could be greater than all the payoffs, so there is at l
oneX such thatemax

RSTP,X. So this leaves us with only two
payoffs that effectively can be betweenm and emax

RSTP, and
this results in at most three balance equations playing
given game.

IV. AN EXAMPLE OF COEXISTENCE OF AGENTS USING
DIFFERENT PAYOFF MATRICES: COOPERATION IN

PRESENCE OF ‘‘ALWAYS D’’ AGENTS

Let us analyze now the situation where there is a mix
of agents using two different payoff matrices, each lead
separately to a different value ofceq . For simplicity we con-
sider the deterministic version but the results for the stoch
tic version are similar. We call antisocial individuals tho
for whom cooperation never pays and thus, although t
can initially be in the C state, after playing they turn to sta
D and remain forever in this state. They can be represen
by players using a payoff matrix that always updatesci to 0;
for instanceM1053. Notice that these individuals are basical
different from those which use a payoff matrix fulfilling con
ditions~1! and~2! who, even though they realize the value
cooperation, i.e.,R.P and 2R.T1S, often may be
tempted to ‘‘free ride’’ in order to get a higher payoff. How
ever, with the proposed mechanism—which implies a sor
indirect reciprocity—when D grows above 50% it punishe
on average, this behavior more than C favoring thus a
flux from D to C. Conversely, if C grows above 50%
punishes, on average, this behavior more than D favo
thus the opposite flux from C to D. In other words, sm
oscillations aroundf C50.5 occur. On the other hand, agen
usingM1053 are ‘‘immune’’ to the former regulating mecha
nism. Let us analyze the effect they have on coopera
when they ‘‘contaminate’’ a population of neutral agents~us-
ing the canonical payoff matrix!. In short, the two types of
individuals play different games~specified by different pay-
off matrices! without knowing this fact, a situation which
does not seem too far from real life.

The asymptotic average probabilities of cooperation c
be obtained by simple algebra combining the update rules
M3051 andM1053. The computation is completely analogou
to the one which leads to Eq.~17!. We have to calculateJDC
andJCD as a function of the variablec and the parameterd
and by equalizing them at equilibrium we get the equat
for ceq . To JDC only contribute the fraction (12d) of nor-
mal players using the canonical payoff matrix who play
against a player who also plays D~normal or antisocial!.
That is,JDC is given by

JDC}~12d!~12c!2. ~34!
0-5
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On the other hand, contributions toJCD come from one of
these three types of encounters:~i! @C,D# no matter if agents
are neutral or antisocial,~ii ! @C,C# of two antisocial agents
and ~iii ! @C,C# of a neutral and antisocial agent~the neutral
agent remains C and the antisocial, who started att50 play-
ing C and has not played yet, changes from C to D!. The
respective weights of these three contributions arec(12c),
d2c2, and 1

2 2d(12d)c2. Therefore,JCD is given by

JCD}c~12c!1d2c21d~12d!c25c~12c!1dc2.
~35!

In equilibrium JDC5JCD and the following equation forceq
arises:

~12d!~2ceq
2 22ceq11!1ceq50, ~36!

and solving it we get

ceq5
322d6A24d214d11

4~12d!
. ~37!

We must take the roots with the ‘‘2 ’’ sign because those
with ‘‘ 1 ’’ are greater than 1 for non-null values ofd. We
thus get Table I forceq for different values of the paramete
d.

V. SIMULATIONS

A. Deterministic version

In this section we present some results produced by si
lation for the deterministic version. Different payoff matric
were simulated and it was found that the system s
organizes, after a transient, in equilibrium states in to
agreement with those calculated in Eq.~15!.

The update fromci(t) to ci(t11) was dictated by a bal
ance equation of the kind of Eq.~20!. The measures ar
performed over 1000 simulations each andc̄eq denotes the
average ofceq over these milliard of experiments. In order
show the independence from the initial distribution of pro
abilities of cooperation, Fig. 1 shows the evolution with tim
of the average probability of cooperation for different initi
proportions of C agentsf C0 for the case of the canonica
payoff matrixM3051 ~i.e., R53,S50,T55, andP51).

TABLE I. ceq for agents usingM3051contaminated by a fraction
d of antisocial agents usingM1053.

ceq(d50.0)50.5000
ceq(d50.1)50.4538
ceq(d50.2)50.4123
ceq(d50.3)50.3727
ceq(d50.4)50.3333
ceq(d50.5)50.2929
ceq(d50.6)50.2500
ceq(d50.7)50.2029
ceq(d50.8)50.1492
ceq(d50.9)50.0845
ceq(d51.0)50.0
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Depending on the payoff matrix the equilibrium
asymptotic states can be of three types: of ‘‘all C’’ (ceq
51.0, ‘‘all D’’ ( ceq50.0 or something in between (0, c̄eq
,1).

We have seen that the canonical payoff matrixM3051 pro-
vides an example of matrix which givesc̄eq50.5.

Let us see examples of payoff matrices which produ
other values ofc̄eq . A payoff matrix which producesc̄eq
51.0 is obtained simply by permuting the canonical valu
of S ~0! and T ~5!, i.e., M3501. For this matrix we have, by
inspection of Eqs.~9! and ~12!,

aCC5aCD50, aDC5aDD51. ~38!

Hence, after playing the PD game the pair of agents alw
ends@C,C# sinceJCD[0 by Eq.~8!.

On the other hand, a payoff matrix which leadsc̄eq50.0
is obtained simply by permuting the canonical values oR
~3! andP ~1!, i.e., M1053, for which

FIG. 2. Curves ofc̄ vs time for different payoff matrices pro
ducing the five possible values ofceq ~from below to above!: payoff
matrices M3501 with ceq51, M2091 with ceq.0.62, M3051 with
ceq50.5, M2901 with ceq.0.38, andM1035 with ceq50.

FIG. 1. c̄ vs time, for different initial values off C0, for the
canonical payoff matrix.
0-6
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aCC5aCD51, aDC5aDD50. ~39!

That is, all the changes are from C to D since in this c
JDC[0.

The rate of convergence to the possible values ofc̄eq de-
pends on the values ofJCD andJDC .

Figure 2 shows the approach of the average probabilit
cooperation for different payoff matrices to their final fiv
equilibrium values.

Finally, we simulated the mixing of agents using pay
matrices M3051 and M1053. The evolution to equilibrium
states for different fixed fractionsd of agents usingM1053 is
presented in Fig. 3. The results are in complete agreem
with the asymptotic probabilities of cooperation which a
pear in Table I.

B. Stochastic version

In this case simulations were made updating the proba
ity of cooperation according to Eq.~20!. However, as we
anticipated, we have to change slightly this equation to
flect reality: two agentsi and j interact and they obtain th
payoffsXi andXj , respectively. For each of them there is
way, from this only event, to know the probability of coo
eration ck of his opponent. What they can do then is
~roughly! estimate thisck as follows. The playeri average
utility in an encounter at timet with agentj is given by

Ui j ~ t !5R ci~ t !cj~ t !1S ci~ t !@12cj #1T @12ci~ t !#cj~ t !

1P @12ci~ t !#@12cj~ t !#. ~40!

When he plays he gets the payoffXi , so his best estimatec̃ j
i

for the probability of agentj is obtained by replacingUi j (t)
for Xi in Eq. ~40!. Then he will have

c̃ j
i ~ t !5

Xi2P1ci~ t !~P2S!

ci~ t !~R2S2T2P!1T2P
. ~41!

FIG. 3. The evolution ofc̄ with time, for different values of the
fraction d ‘‘antisocial’’ agents~using M1053) embedded in a popu
lation of neutral agents~using the canonical payoff matrix!.
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Exchangingi for j in this equation gives the estimate of th
probability ci(t) that makes agentj. Equation~41! can re-
trieve any value ofc̃ j

i (t) and not just in the interval@0,1#, so
it is necessary to make the following replacements:

if c̃ j
i ~ t !.1 ⇒ c̃ j

i ~ t !51

and if c̃ j
i ~ t !,0 ⇒ c̃ j

i ~ t !50. ~42!

When this happens, the agent is making the roughest
proximation, which is to assume that the other player a
like in the deterministic case.

For the canonical payoff matrix, the result was the e
pected one as this is a matrix obeying condition~29!: as
predicted by the analytical calculation of Sec. III B, the val
for the equilibrium mean probability isceq51/2 as in the
deterministic case, despite the change introduced in Eq.~41!.
Simulations for other payoff matrices satisfying conditio
~29! or ~30! were also made and in all the cases the de
ministic results were recovered.

We will illustrate the case in which some

XP@m,emax
RSTP# ~43!

with two particular examples. One of them is the case of
normalized matrixM1S10, with S varying from 1 to 2, both
limiting cases in which condition~43! ceases to be valid. So
for S<1 the update equation is given simply by

ci~ t11!2ci~ t !5@12ci~ t !#@12cj~ t !# ~44!

with ceq51 in this case, while forS.2,

ci~ t11!2ci~ t !512ci~ t !2ci~ t !cj~ t ! ~45!

for which ceq5(A521)/2 is the corresponding equilibrium
value. WhenSP(1,2#, both balance equations play a rol
the general equation for the update follows from Eq.~20!
applied to this particular case:

ci~ t11!2ci~ t !5@12ci~ t !#@12cj~ t !#1@cj~ t !

22ci~ t !cj~ t !#@12u~12e!#. ~46!

So we can see that forR5T51>e, Eq. ~46! reduces to Eq.
~44! while if R5T51,e we obtain Eq.~45!. When the
simulation takes place,cj has to be replaced byc̃ j

i .
The same analysis can be done for the matricesM11T0,

with T varying from 1 to 2 also. In this case the other ro
competing withceq51 is ceq5(32A5)/2.

The results of the simulations for both cases are prese
in Table II, and data forS.2 andT.2—for which Eq.~29!
is valid—are also included.6

As it can be seen from the data, for 1,X<2, that is,
when condition~43! is valid, the results for the stochast
case are the same as they would be if we were working w

6c̄eq corresponds to the average ofceq over 100 experiments.
0-7
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the deterministic model. This is a consequence of the e
mate~41! together with conditions~42!.

For values ofT andSgreater than 2, for which condition
~43! does not hold anymore, we can observe what at fi
may seem a curiosity: forT or S near 2, the equilibrium
values for the deterministic case are recovered as expe
but as we increase the values ofT or S, the value ofceq
51/2 is approached. After a little thought, it is clear that th
is also a consequence of the estimation of Eq.~41!, since it
depends on the payoffs. It can be easily seen that in the
of M1S10,

if T@1 then c̃ j
i .0 ; i , j ~for XiÞT!. ~47!

If we take thencj50 in Eq. ~20!, and remembering thatT
→` implies thatm→`, we will obtain thatceq51/2. In an
analogous way forM1S10,

if S@1 then c̃ j
i .1 ; i , j ~for XiÞS! ~48!

which together with Eq.~20! again leads toceq51/2. The
encounters for whichXi5S or T are responsible for that th
exact valueceq51/2 is not attained. A similar analysis can b
done whenR or P→`.

VI. SUMMARY AND OUTLOOK

The proposed strategy, the combination of measure
success and update rule, produces cooperation for a
variety of payoff matrices.

In particular, we notice that the following facts.
~1! A cooperative regime arises for payoff matrices rep

senting ‘‘social dilemmas’’ such as the canonical one. On th
other hand spatial game algorithms such as the one of
@16# produce cooperative states (ceq.0) in general for the
case of a ‘‘weak dilemma’’ in whichP 5 S 5 0 or at most
whenP is significantly belowR.7

~2! Payoff matrices withR5S50 which, at least in prin-
ciple, one would bet that favor D, actually generate equi

7In particular, in a spatial game in which each player intera
with his four nearest neighbors, we have checked that the cano
payoff matrix leads to the an ‘‘all D’’ state withceq50.

TABLE II. Equilibrium values for different normalized payof
matrices.

X c̄eq for X5S c̄eq for X5T

1 1 1
1.5 1 1
1.9 1 1
2 1 1
2.1 0.617 0.383
4 0.581 0.370
8 0.556 0.403
16 0.530 0.467
1000 0.548 0.455
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rium states withceqÞ0, provided thatP,m—see Eqs.~8!-
~13!.

~3! Any value of equilibrium average cooperation can
reached in principle, even in the case of the determini
model, by the appropriate mixing of agents using two diff
ent payoff matrices. This is an interesting result that go
beyond the different existent social settings. For instance
have in mind situations in which one wants to design a
vice or mechanism with a given value ofceq that optimizes
its performance.

~4! In this work we adopted amean fieldapproach in
which all the spatial correlations between agents were
glected. One virtue of this simplification is that it shows t
model does not require that agents interact only with th
within some geographical proximity in order to sustain c
operation. Playing with fixed neighbors is sometimes cons
ered as an important ingredient to successfully maintain
cooperative regime@16,19#. ~Additionally, the equilibrium
points can be obtained by simple algebra.!

To conclude we mention different extensions and appli
tions of this model as possible future work. We mentioned
the beginning, ‘‘statistical mechanic’’ studies. For instanc
by dividing the four payoffs between say the rewardR re-
duces the parameters to three:a5S/R, b5T/R, and d
5P/R, and we are interested in analyzing the dependenc
ceq on each one of these three parameters in the vicinity
transition between two different values. It is also interest
to introduce noise in the system, by means of an inve
temperature parameterb, in order to allow irrational choices
The playeri changes his strategy with a probabilityWi given
by

Wi5
1

11exp@b~Ui2e ĩ !#
,

whereẽ i[max$ei ,m%.
We are planning also a quantum extension of the mode

order to deal with players which use superposition of stra
giesaCuC&1aDuD& instead of definite strategies.

The study of the spatial structured version and how
different agents lump together is also an interesting prob
to consider. Results on that topic will be presented el
where.

Finally, a test for the model against experimental d
seems interesting. In the case of humans the experim
suggest, for a given class of games~i.e., a definite rank in the
order of the payoffs!, a dependency off c with the relative
weights of R,S,T, and P, which is not observed in the
present model. Therefore, we should change the update
in such a way to capture this feature. Work is also in progr
in that direction.

APPENDIX: CALCULUS FOR THE MAXIMUM
OF THE GAIN ESTIMATE FUNCTION IN THE

STOCHASTIC CASE

We will now show in detail the calculus for the maximu
of the gain estimate functioneRSTP(c), restricted to the in-
terval @0,1#. First we have to know if the function has

s
cal
0-8
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maximum in the open interval (0,1). This can be done
noticing that, by Eq.~18!, for having negative concavity, w
have the condition

R2S2T1P,0. ~A1!

By doing

d

dc
eRSTP50 ~A2!

we find that the extremum ofeRSTP(c) is attained at

co52
1

2

~S1T22P!

~R2S2T1P!
. ~A3!

Imposingco.0, co,1, and using Eq.~A1! for consistency,
we obtain

S1T.2P, S1T.2R. ~A4!

Notice that the sum of these two conditions is equivalen
condition ~A1!. In turn, Eq.~A4! can be expressed as

S1T.2max$R,P% ~A5!
e,

n,
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so this inequality resumes Eqs.~A1! and~A4!. It can be seen
that if Eq. ~A5! is fulfilled, emax

RSTP>m always.
So if condition~A5! holds, the maximum of the function

eRSTP(c) takes place in the interval (0,1) and its value as
function of the parametersR,S,T, andP is

emax
RSTP5P2

1

4

~S1T22P!2

~R2S2T1P!
. ~A6!

On the other hand, if

S1T<2 max$R,P% ~A7!

then

emax
RSTP5max$R,P% ~A8!

sinceeRSTP(0)5P, eRSTP(1)5R.

Similar conditions can be obtained for the minimum
the function e RSTP(c) within the interval @0,1#. It can be
shown that ifS1T,2 min(R,P), the expression in~A6! is a
minimum instead of a maximum, and thate min

RSTP<m. If S
1T>2 min(R,P), thene min

RSTP5min(R,P).
he
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